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SUMMARY

An integral expansion model is developed as a preliminary

step in a theoretical model for the -redictlon of expansion resulting

f_om a hypervelocity impact. The integral model is developed for the

symmetrical (sphere, infinitely long cylinder or seml-inflnlte plane)

expansion of a gas cloud into a vacuum. The mass, momentum and energy

are conserved on a total integrated basis at all times during the

expansion. Only the internal and kinetic energies are considered for

the conservation of energy, the expansion is assumed to be isentropic.

The density, particle velocity and sound velocity varlation_

with distance agree closely with those obtained from a finite difference

solution for the initial times after the cloud is allowed to expand.

After long periods of time, when the expansion flow becomes inertia

dominated, the distributions of density, particle velocity, and sound

velocity approach closely the long term self-similar results.

The integral model is a relatively fast method of obtaining

the distributions of the density, particle velocity, and pressure with

distance for different times during the expansion of an element. It

takes less than a minute on an IBM 7040 computer to calculate 30 time

increments for a cylindrical expansion. __/_-

u
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1.0 Introduction:

The symmetrical expansion of a plane, cylindrical or spherical

homogeneous mass of fluid into a vacuum is governed by the con-

servation equationsin the following forms, plus an equation of

state.

___ + p___ _ _ o0 (1.l)_r _ _-j_.r_ : o

+ _ _ + J- _i_ : o (1.2)
b_ _c p 7_r

Equation 1.2 for the conservation of momentum neglects shear and

body forces and therefore equation 1.3, for the conse-vation of

energy, assumes the expansion flow is isentropic (i.e. ____= O )"

The four equations I.I to 1.4 may be solved for the four

dependant v_riablesf, _X, _ , and a as functions of the two

independant variobles r and t , if an equati r_ of state (Eqn. 1.4)

is specified. Closed form analytical solut{ons are available for

the planar case (J =0) (Ref. I), and the cylindrical and spherical

cases (_: i, 2) for certain specified conditions (Ref. 2).

,J

M
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Numerical methods may be used to solve the set of equations

I,! to 1.4 for the general case (Ref. 3). However these methods

require relatively long computer times to obtain close appro-

ximations for the expansion flow, and become unnecessary after

long periods of time when the expansion becomes inertia dominated

and self-similar solutions may bc used.

An integral expansion model was developed in order to obtain

a simple apprJximate solution for the variation of the dependant

variables withr andS, for short and long periods of time. The

integral model satisfies the conservation equations on a total

integrated basis over the expansion region at any time. A form for

the density and particle velocity distributions, withr , was

specified. _e forms assumed for these distributions (Sec. 2.0)

were similar to the iong term self-slmtlar distributions (Ref. I).

In the following sections the integral model w£1l be developed

for the expansion of an element of an infinitely long cylinder as

an expansion of t'hlstype is required for the development of a

theoretical model to predict the expansion resulting from a hyper-

velocity impact. Planar and spherlcal ,xpa.,slonsolutions are

developed in Appendices B and C.

i,

i

4-

mm
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2.0 Assumptions for the Cylindrical Model:

An infinitely long cylinder of diameter "d" was assumed to

contain a homogeneous mass of fluid with a density "Ps" and a

velocity of a sound " O_s". The particle velocities "¢ere assumed

to be zero. At time t = 0 the mass of fluid was assumed to be

unrestricted and allowed to expand into a surrounding vacuum.

The resulting radial expansion of an element of the cylinder with

thickness "_" was considered. No axial expansion of the element

will occur" due to the infinite length of the cylinder. The model

for the expansion of a finite cylinder with axial components of

particle velocity will be presented in another report.

The material was assumed to ex_pand as an ideal gas with:

_ = const. (2.1)

The outside particles were assumed to move radially away from

the centre axis atthe constart escape velocity,

_q = _ 0.% (2.2)

A rarefact£on wave was assumed to move radially into the element

at the velocity of sound "_ "s • Equation (2.2) fixes the outside

radial boundary of the expanding cylindrical element as: l

<o= a/z+ _ Z c2._>
o

The position of the front of the inward moving rarefaat£on wave

can be determined as a function of time knowing the sound velocity.

q = alz - a_.T. (2.4a)J

,4
m
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Once the rarefaction w_,,p has moved to within .0001 times the

original radius of the cylinder it was assumed to remain at that

position and

r_ = . 0001 _/_ (2.4b)

Figure 2.1 shows schematically the variation of density and

particle velocity with respect to the radius for various _vn-

dimensional times after release of the element. A non-dlmensional

time of I would occur when the iugoing rarefaction wave has

reached the centre of the cylindrical element and can be expressed

as

' tI; = (2.s)

....... ......I-I p,. ,. . -,4 is- o ,- -_'_,_.o_,_ _ -±o ' ' ", 4
I "_ Z _ I/ - .

® _"/ 1>, "\ >
.IJ _xx . I

_° ,-, o /II. I
i ', \ _ / ,' _.C'-OI , ' I_

_ _I I /_ II_ " ' "

r_ Fo _ ro
Radius Pad ius

(a) (b) ,

Denslt_ and Particle Velocity vs Radius _,i

Figure 2. I

At t I =0, before expansion occurs, the density is constant

and equal tops over the original radius d/_,, and the particle

velocity is zero throughout the cylinder.
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At t ! = ½ the Ingoing rarefaction wave has progressed into

the cylinder ½ the original radius to a position at _ . The

original outside particles of the cylLnder have expanded outward

to a position r o which can be obtained from equations (2.2) and

o

(2.5). Between the radii r o and r i the density and particle

velocity wtll vary in some manner so that:

at rc _ J_r = AJ_ (2.6)

and pr = O (2.7)

at _'- JJ_." = O (2.8)
• 9

Equations (2.6) to (2.9) specify the required boundary conditions

if the eylinde_ is expanding into a vacuum at a constant escape

front velocity,and the rarefaction wave moves inward at the local

sound velocity.

At t°> I the rarefaction wave will have reached the centre

of the cylinder and the density at the centre will have decayed

from the original value ps to some reduced value pc. Therefore

the boundary condition for the density at ri will become,

The other bouudary conditions, equations (2.6) to (2.8) will

remain the same. The value of Pc' which is a function of time

is determined from a core model as discussed in section 4.

m
m
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At any time during the expansion the total mass, momentum,

and energy were conserved. The integral forms of the conservation

equatio_,_ for a ey[Lndrical element are:

Me : 2Tr_ ( Pr rdr (2.11)Mas_.___s
J

Momentum

The total momentum is automatically conserved by assuming

the expansion to be symmetrical about the axis, as the change in

momentum along any particle path is balanced by an equal change

in momentum along another particle path in the opposite direction.

where _ is the specific internal energy
_(_-,)

and ]_2 is the specific kinetic energy

The conservation equations in their integral forms 2.11 and

2.12 require profile forms for the density and particle velocity

variation with respect to the radius in order to evaluate the

integrals for a particular time. The velocity of sound _ was

assumed to be a function of _, and the densltY_r . The profile

forms assumed for the density and particle velocity variations with

the radius are: _i

For _ ' _ I _i

p, = [, (2.13) .ro-r_ #:

( ) .i,zz_ _s r-rc cLt)=, (2.14) i
\to- r_

T
/

J
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For _ I

: po ,-

I
The profile forms for t >I, equations (2.15) and (2.16), are

the same as those obtained for the long term self-similar flows

when the expansion becomes inertia dominated and the pressure terms

are neglected (Reference I). The profile forms for t/_ i, equations
I

(2.13) and (2.14) were obtained by modifying the long term expansion

profiles in the light of some i_itlal results obtaLned. For the

initial times after expansion_r i is not negligible compared to ro

and was therefore all_¢ed for. It was found unnecessary to specify

a linear velocity profile as the unknowl_ value of _(t) could be

I
determined for t _ I. The density was not made proportional to

(_o) Z as the density decreased abruptly at r i
rather than in a

I

continuous manner as it does for t _ i when the rarefaction has

reached the centre.

m
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3.0 Short Term Cylindrical Expansion:

The short term expansion is used here for the expansion of

the element during the time tI =0 to t I = I. The unknown exponents

(t) and _(t) in equations 2.13 and 2.14 were determined from the

2 conservation equations 2.11 and 2.12. Once the exponents B(t)

and _(t) had been determined the density and particle velocity

profiles were determined from eq-_tions 2.13 and 2.14.

The toLal mass and energy within the expansion region is

equal to the mass and energy of the original element minus that

which remains in the unexpanded region at any time.

i

E_ = He os_ (3.2)

where r_ -- _Z -- _ t (2.4)

Substituting for pr in equation 2.11 from equation 2.13,

ro

ro_f _ rd_ (3.3)r_

Integrating (3.3), (Appendix A)

and _(t) may be solved for at any time t knowing:

d.iz 0._ "_ (2.2) --
%= "" _- i
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Once 8(t) is obtained C(t) may be determined from the energy

equation (2.12)o Substituting forpr, Qr, _lr in Eqn. 2.12,

and using the ideal gas relation:

15

)?.C(t) ] (3.6)2. r.-r,.

Integrating equation 3.6 (Appendix A),

_(_-,)(_._#ve.,)

+K, _ [ B.2c.(2c+,) r(_)r(2c)]

= -- )_'where K, 2_gzA (to r_
K2: 2,_A (_o-r_)_; (3.8)

and r" 0 and r i are _(_ )as before

E R is given by Eqn. 3.2

From equations 3.7 and 3.8, _(t) may be obtained for the same

time chosen for the solution of B(t).

The distributions Of pr and Ltr with respect to the radius,

for any time during the expansion, can be obtained from the pxofiles

given in equations 2.13 and 2.14, and the determined values of _(t)

and C(t). some calculated profiles are shown in section 6.

m
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4.0 Centre Line Decay:

After the ingoing rarefaction front reaches the centre axis,

a decay process takes place at the centre (Figure 2.1). This

decay process introduces an additional unknown Pc at the centre.

In order to determine hOWpc varies with time, a simple core

model was considered.

When the front of the ingoing rarefaction wave reaches a

position a short distance away from the centre axis, it was

assumed to remain there, forming a centre axis core with a radius

rc ffi.0001 d/2. This approach is consistant with other mathematical

solutions where the position at the centre (r = 0 and_l r = 0) is

avoided.

The volume and circumferential area of the core will remain

constant with respect to time as rc is assumed constant.

A_. - 2-rrr_ _'T. (4.2)

At any time the mass within the core will be:

and the rate of mabs flow outward from the core will be:

(4.4)I-
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Equations (4.3) and (4.4) impose a limitation on the core

radius _'c by assuming that the density (pc) within the core is

constant with respect to the radius. Ymmediately after the

rarefaction wave reaches a distance Y'c from the centre, (_f/_r)

at rc is very large requiring rc to be small. After a period of

time (_I_) at rc become_ very small and the assumption that

fc is constant throughout the core is a good approximation.

The rate of mass outflow from the core may also be expressed

as

= _ d_ (4.5)

dt

Then combining equations (4.4) and (4.5)

- - _ 6_ (4.6)

Po
and substituting for A c and _c from equations (4.1) and (4.2)

_ _ 2 _t_r_ _7 (4.7)

Now assuming a linear velocity profile from the center to the

outside radius ro (Equation 2.16)

\Vo i

Equation (4.8) imposes a limit on _c as it implies that at

the same time the rarefaction front reaches rc, the particle

velocity increases from 0 at the centre.

m
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Substituting (4.8) into (4,7) with

d,_ _ _ 2 .£_.._ _ (4.9)

Integrating (4.9) with boundary conditions

gives

pc = ps I_/2 + _ t_)_I_ + _ _ (4.10)

where F I is the radius of the escape front at the time when

the rarefaction uould have reached the centre axis. Equation

(4.10) gives the value of pc at the centre as a function of time.

After a long period of time r o becomes large with respect to

_12 and £rom equations (2.3) and (4.10)

c I (4.11)

Equation (4.if) is consistant with the Iong term self-similar

solution for inertia dominated flow, (Reference I). Equation

(4.10) will not apply for early times, just after the rarefaction

wave reaches the centre, due to the assumptions made in equations

(4.3), (4.4) and (4.8), as previously discussed. It is not

necessary to specify the density decay at the centre I£ a llnear

1966009147-020
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velocity profile is assumed as the two corservation equatio,ls

h
may be used to obtain two unknowns. Equation (4. I0) may be _--

written as a general form for the density decay at the centre:

bLt)

I

]

m

,t

o

q
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9.0 _Long Term Cylindrical Expansion:

For the long term expansion, after the rarefaction reaches

the centre, a linear velocity profile was assumed and the two

conservation equations (2.11) and (2.12) were used to solve for

the two unknowns B(t) and D(t) equations (2.15) and (4.12).

The total mass and energy in the expansion region is equal

to the ortgtrml total mass and energy of the element.

E _ _v_ _.., (3.2)

Let _= r and kPI CJ-- = then the relations to be substituted

into the conservation equations become, from (2.1 5), (2.16) and

(4.12)

= - (5.2)

= ?_, (5.3)

,/_r = J_s _2 (5.4)

Substlt,,ting for fr' Or, /_r and r fn equations (2.11) and (2.12) _

(Appendix A)
!

'

1
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Integrating equations (5.5) and (5.6) (Appendix A),

The two unknowns 8(t) and _)(t) were determined from the two

simultaneous equations (5.7) aod (5.8) at any time for _/> I. The

results are shown in the next section.

' I .
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The linear particle velocity distribution is con_istant

_ith the long term self-similar assumption obtained from assuming

the flow to be inertia dominated.

The density distribution exponent B(t) approaches the

same value as that for the long term self-similar solutions

B_.I_3 _-2 (Ref. I) (6.3)
_-I

Consider the internal energy portion which is the first term of

equation (5.8)

_(__,j L_j @_(.t}__)

and_._..: const. I I-r _/ro,_L_)] (6.5)L" d
The value of b(t) approaches 2 and any variation in B(t)

is insigl ificant compared to the increase in r-o so

I.E. _, const. I_l_ (6.6)

From (6.6) it can be seen that as r becomes large the internal
O

energy approaches zero as long as _> I. The internal energy will

approach zero more quickly as _ is increased. This is shown by
*

the results in figure 6.5.

Considering only the kinetic energy term of equation (5.8),

and substitute for _I from equation (5.7), then

).

• BCz)- M_.___.__ Z c6.7)
2E

|
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integrated mass. This error could also be part of the cause

for the discrepancy in the centre line density decay (Figure 6.6).

In any case the differences between the two models are small and

would indicate that the integral model density distribution is a

good approximation.

Figure 6.8 shows the comparison of particle velocity profiles.

Initlally the finite difference solution departs from the linearity

approximation, but rapidly approaches a linear distribution.

The descrepancies between the particle velocity profites are

small and would indicate that the integral model would approximate

the expansion flow closely.

!
i
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6.0 Comparison of Results:

Figures 6.1 to 6.4 show the variations o_ sound velocity,

particle velocity, pressure and density with radius for various

times (t l< I and t l_ I). _(t), C(t) for the short term, and

_(t) and _(t), with _(t) = I, for the long term were first

determined from the conservation equations. Then from the profile

and decay forms, the distribution of density (Fig. 6.4) and

particle velocity (=ig. 6.2) were determined as functions of

radius for the times shown. Figures 6.1 and 6.3 were obtained

from the density profile assuming the ideal gas relations:

The relationships shown in Figures 6. I to 6.4 were calculated

using _ = 3. Figure 6.5 shows the variation of the exponent,(t)

for the density decay vs time for different values of _ . It can

be seen from figure 6.5 that the decay exponent very quickly

approaches the long term self-similar value of 2 (Reference i) for

the higher values of _ . It appears, however, that the decay

exponent (D(t)) does not quite reach the long term self-similar

value of 2. This descrepancy could be due to the internal energy

term which is not included in the long term self-similar solutions

(Ref. I).

wE

7

l
f

...."T I m

m
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Substituting for E _ equation (6.7) becomes

which is consistant with the long term self-sinilar density

distribution exponent (equation _.3).

In order to demonstrate the validity of the initial profiles

of the dependant variables with radius and time, the results

obtained from a finite difference solution are shown in figures

6.6 to 6.8. Figure 6.6 shows the centre line density ratio
I

(_c_) vs non dimensional time (_) for both the finite difference

and the integral solutions. It can be seen that in the integral

model, the centre line density decays faster than in the finite

difference solutions with the difference between the two solutions

rapidly becoming small.

Figure 6.7 shows a comparison of the density profiles for

the integral and finite difference solutions. There is virtually

no difference between the two models until the ingoing rarefaction

wave reaches the centre. In order to compare profiles, the centre

line density of the integral model was made the same as that of

the finite difference solution. It can be seen that the density

obtained by the integral solution decreases more quickly with

increasing radius than that obtained from the finite difference

solution. This would indicate that an error has accumulated in

the finite difference solution as it does not satisfy the total

?

l
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7.0 Conclusions:

it may be concluded from the comparison of results

that the integral model will give a good approximation

for the distribution of density, sound velocity, particle

velocity and pressure vs radius, at any time, resulting

[rom the radial expansion of a cylindrical, element of an

infinitely long cylinder of fluid into a vacuum.

Tile integral model is a simple and fast method of

calculating the expansion parameters. It takes le_s than

a minute to calculate 30 time increments on an IBM 7040.

The plane and spherical cxp.,ision results given in

Appendices B and C, indicate that tile integral model may be

equally well applied to these types of expansions.
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APPENDIX A

CYLINDRIqAL EXPANSION

a) Short Term Integral Expansion

The forms assumed for the density and velocity

distributions are:

r-rL ] A.I

a(t) and C(_) may be determined from the conser-

vations of mass and momentum in their total integral

forms:

ro

r6

_ - 12ng-z" _ _ +

Substituting A.I into A.3, _) may be determined.

Let _ = _- r_
q-r_

then r - rg q- (Fo-t_)_

!

and the limits for A.3 become

r--re _: o

r':-G i_: I

o _
(

t
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re-arranging A. 5
I

o ;

using a Gamma function (r) form for the solution

I

o rC_+3+z)
equation A,6 may be integrated to give:

_: :_g_p+{(_o-_)_r_sco+,5r(21r(.eCt)_ _)

+r_(_o-rc)rCBct):.,)rC,)_ A.8

Simplifying A. 8

(_) was solved for numerically from equation A.9 at

any given time where:

_,; - d.b - a,C

r_= a/_+ msc A.IO

C (_P)was determined knowing _(_) and using the

profile forms A.I and A.2 together with the conservation

of energy A.4.

i i
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For an ideal gas: \_-I

and _¢I -- _$; #. ii

Then substituting fOr#r, _r' and_r in the

energy equation A.4 with

_-%

I r ;/ \_-¢':_-,)

° i_L_-,)

+'_.--._e _ ,'; e i Lq-c;)_R. A.12
j

Re-arranging A,12

Integrating A.13 using the P function form (#,7) and

letting:
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_2 .= k_, ?_ I.P(_8_t)+I)P(Z) 1

ry sa) +2cC_)_-3)

"E 1+ I<_ ____' p(e(_).,) r(2ccO+O

J

S_,,,plifying A. 16

' I t
A.17

J
[

C (_) was solved for numerically from equation A.17 at

any given time knowing:

l
L
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b) ),ong Term Integral Expansion

The assumed forms for the density and velocity

profiles with respect to and the density decay at the

centre with respect to time are:

P° - P_ Vo ,.,+0
I

where _'"= _/_ + _st_ A.21

and _ is the time taken for the head of the rarefaction
C

wave to reach a position

: .ooo,
The conservation of mass and energy for t I_ I

become

ro

M
: I 2rr_pf car A.23

!

O

o

and _ = 11" _;_/_-)' _'Z?, _ A. 25

E : M ___._ A.26

r
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Substituting fOr>r, _tr and _r (equations A.18 - A.20) in

the conservation equations A.23 and A.24 with:

r, f-.'121 - _ and /_/ = --
_,= _- A.27

-_ -- A.28

and,

I

o

Simplifying A. 29 and A.30

M: 2_-_p,rosy,_ 1(_'"_9 _ _ ,._
0

,_,) l _ ._0

Integrating A.31 and A.32

S(¢)+

_'0 (t)'4"I A.34

and combining equations A.33 and A.34 to eliminate b (_).

i
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E---K_.,_ If_l(SLt)_-I)l I

.x._?" I A35

(_) was solved numerically from equation A.35

at any time _ with

_ k'_.,_ .- ¢(:-_)

Knowing _(_) then _ (_) was solved for from

equat ion A. 33.

A
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APPENDIX B

Following the analysis in the main body of this

report (Sections 3 to 5), the solution for the long term

plane expansion is obtained in this appendix.

For the initial expansion process, the following

density veloczty and speed of sound profiles are assumed:

A(r #a_ (r-rc_c_t)
= B.2

CFZ-F_, e_)

" E ]\c-F_-c_l B.3

Letting _ = r- _'_ B.4
_-_,

The profiles may be written as

B

_.#_,-_] _._
#+ _s IZc= B.6

F"i- -=l_._,I,-_I _
I,..J

Both the total mass and total energy within the radial

expansion regionare conserved. The total L_mssand energy

i_tegrals in this region may be written as

M_ - I #"A,ar _,8
IIIb._.

I,

f

]
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'"° F '_," -,-_ ] A_," B.9
Substituting Eq. B.4 and B.5 into Eq. B.8 and integrating one

obtains

M___Ab(_o-r,) B._o
B+l

Substituting Eqs. B.4 to B.7 £nto Eq. B.9 and integratil_g one

obt ains

E_
8+2P_- I

The i_entropic relation is

A "_mparison cf Eqs. B. 5 and B.7 now shows that

= BLo-,.r'_ _._P
!

Z
Substitution of Eq. B.13 in Eq. B.II now gives the final form

of the energy equation

E_ : Ab(,o._)l__._,)_,.,

B,c r(_) r(2c) )

!

!
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Equations B.10 and B.14 are the expressions for the

total mass and energy in the radial expansion region as long

as the center line value of density does not change, (_i_O),

and as such, are only valid until the initial expansion wave

has reached the center-line.

For times greater than that time which is required

for the initial expansion to reach the center, other expres-

sions must he deri_ed. The density and velocity profiles

a_sumed are

Since ri = O * one may write

\)ro
s

: * A finite core radius rc is assumed to exist at the center

: line within which the properties are decaying.
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The center core decay is assumed to be of the following

form: [ ,,_t)

._ is the center llne densit,,, #S is the initialwhere i c
!

shocked density, r is the escape front radius at the time

the rarefraction first reaches the center-line, and F"o is the

escape front radius.

Wr':tinS_ = _, B.20

r__':_',

and the total mass integral as

M : I'°A_r dr B.22
"O

and substituting Eqs. B.17, B.19, B.20 and B.2i into Eq. B.22

and integrating one obtains

• = - B. 23

B,-I

mF,_ : M (IB+I \

-r_"_ _ j B.24

The energy irtegral is written as

r

g" : /_ FOr

*., I ' P ! !"
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Substituting Eqs. B.17 to B.21 and Eqs. Bo12 and B. 13 into

Eq. B.25 and integrating the resulting energy equation is

E = Aroo. , a, j

4- _ D -_1_5 | B.26

Eqs. B.24 and B.26, total conservation of mass

and energy respectively, are the valid expressions for all

times greater than the time required for the initial expansion

to reach the center-line.

The speed of sound, velocity, pressure and density profiles

were obtained at various timer as functions of non-dimensionalized

! radius by using the relations developed in this appendix, and

are shown in Figs. B.I to B.4. The times indicated on each

profile is the time (in microseconds) from the initiation of the

expansion.
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APPENDIX C

The solution for the long term spherical expansion

of a gas cloud into a v_cuum is developed in thic appendix.

The following density, velocity and speed of sound

profiles are assumed for the initial expansion process

(before radial rarefraction reaches the center).

c.3

Letting R = _- tC C.4
r_-r_

The profiles are written as

P

Ctr = O.s _l-- t_.. ] C.7
, =

Both the total mass and total energy _ithin the radial ,_

expansLon region are conserved. The mass and energy integrals

in this regio_.are

?

|

:..... t | i -
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Substituting Eqs. C.4 and C.5 into Eq. C.8 and integrating,

one obtains:

= _TF_ - i

@* ,)

' Substituting Eqs. C.4 to C.7 into Eq. C.9 and integrating

(with use of the isentropic relation expressed by Eq. B.13)

one obtains:

; +@°<}j_]

IClr._ r;) 3. 2C. L2_:+ ;i.)(2_-i- i_j_ rl (_f_..) r'_/t3)

+_ (_.-rO_a¢_c+,)(2_1 _(.._)r(,_)

UI"
L

.=

q
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EqJations C.10 and C.II remain valid as long as the center

value of density does not change (riCO) , and are therefore

applicable only until the expansion head has reached the

center of symmetry.

For times greater than that required for the _-

expansion to reach the center, the following derivation is

made:

The density and velocity profiles are assumed to be:

-- C.12

\ro-r_./_I

\r.- r;j
Since _'_ _ O one may write

The center core decay is assumed to be the following form:

Writing _ = _ C.17

and __i = _! C.18
%

and the total mass integral as

M : ( pr _'Trr_ar _.,9]
@

2

......._ | i I IIJ
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• and substitutin_ Eqs. C.14, C.16, C.17 and C,18 into

Eq. C.19 and _ntegrating, one obtains

The equation of total energy conservation in

integral form is

ro

: Substitutton of Eqs. C.14 to C.18, Eqs. B.12 and B.13 into

Eq. C.21 and integ-'ating yields:

0 ,_ _-j

+_, _ ± 6 r(1)r(O

'. 22

Equations C.20 and C.22 are the ferms of total mass and

energy conservation equations :;hich are valid for a]l times

greater than the time required for the initial expansion to

reach the center of symmet'y.

W

The speed of sound, velocity, pressure and density

profiles were obtained at various ti_m_s as functions of

non-dlm__nsionalized radius by using the relations developed

. in this appendix, and are shown in Figs. C.l to C.4. The

times indicated on each profile is the time (in mi¢,ro,_:econds)

from _"_'",,,.initiation of the expansion.

II ' IP"1 I " I
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